| Realizando el análisis: |
| |
Recordar que: |
| |
|
$10\,\%=\dfrac{10}{100}$ |
| |
Según lo indicado, y sea $N=número$: |
| |
|
$\dfrac{4}{5} \times \dfrac{10}{100} \times\dfrac{30}{100}=\dfrac{8}{100} \times \dfrac{5}{100} \times N$ |
| |
Simplificando ceros: |
| |
|
$\dfrac{4}{5} \times \dfrac{1}{10} \times\dfrac{3}{10}=\dfrac{8}{100} \times \dfrac{5}{100} \times N$ |
| |
Sacando quinta a $5$ y $100$ |
| |
|
$\dfrac{4}{5} \times \dfrac{1}{10} \times\dfrac{3}{10}=\dfrac{8}{100} \times \dfrac{1}{20} \times N$
|
| |
Sacando cuarta a $8$ y $100$: |
| |
|
$\dfrac{4}{5} \times \dfrac{1}{10} \times\dfrac{3}{10}=\dfrac{2}{25} \times \dfrac{1}{20} \times N$
|
| |
Despejando $N$: |
| |
|
$N=\dfrac{25 \times 20\times 4 \times 1 \times 3}{2 \times 1 \times 5 \times 10 \times 10}$ |
| |
Eliminando ceros: |
| |
|
$N=\dfrac{25 \times 2\times 4 \times 1 \times 3}{2 \times 1 \times 5 \times 1 \times 10}$ |
| |
Sacando quinta a $25$ y $5$: |
| |
|
$N=\dfrac{5 \times 2\times 4 \times 3}{2 \times 1 \times 10}$ |
| |
Sacando quinta a $5$ y $10$: |
| |
|
$N=\dfrac{1 \times 2\times 4 \times 3}{2 \times 2}$ |
| |
Sacando mitad a $2$ y $2$: |
| |
|
$N=\dfrac{1\times 4 \times 3}{2 \times 1}$ |
| |
Efectuando: |
| |
|
$N=6$ |
| Respuesta: |
| |
La solución es la Alternativa C |