| Realizando el análisis: |
| |
Recordar que: |
| |
|
$20\,\%=\dfrac{20}{100}$ |
| |
Según lo indicado, tenemos: |
| |
|
$20\,\% \times 15\,\% \times 300 + 40\,\% \times 10\,\% \times 150$ |
| |
|
$\dfrac{20}{100} \times \dfrac{15}{100} \times 300 + \dfrac{40}{100} \times \dfrac{10}{100} \times 150$ |
| |
Simplificando ceros: |
| |
|
$\dfrac{2}{10} \times \dfrac{15}{100} \times 300 + \dfrac{4}{10} \times \dfrac{1}{10} \times 150$ |
| |
Simplificando ceros de $300$ y $150$ |
| |
|
$\dfrac{2}{10} \times \dfrac{15}{1} \times 3 + \dfrac{4}{10} \times \dfrac{1}{1} \times 15$
|
| |
Sacando mitad a $2$, $4$ y $10$: |
| |
|
$\dfrac{1}{5} \times \dfrac{15}{1} \times 3 + \dfrac{2}{5} \times 15$
|
| |
Sacando quinta a $5$ y $15$: |
| |
|
$\dfrac{1}{1} \times \dfrac{3}{1} \times 3 + \dfrac{2}{1} \times 3$ |
| |
Efectuando: |
| |
|
$9+6$ |
| |
|
$15$ |
| |
La solución es la Alternativa A |