| Resolviendo |
| |
Descomponiendo: |
| |
|
$\dfrac{\sqrt {2}}{\sqrt {72}+\sqrt {50}-\sqrt {8}}$ |
| |
|
$\dfrac{\sqrt {2}}{\sqrt {36 \times2}+\sqrt {25 \times 2}-\sqrt {4 \times 2}}$ |
| |
Separando raíces: |
| |
|
$\dfrac{\sqrt {2}}{\sqrt {36}\sqrt {2}+\sqrt {25} \sqrt{2}-\sqrt {4}\sqrt {2}}$ |
| |
|
$\dfrac{\sqrt {2}}{6\sqrt {2}+5 \sqrt{2}-2\sqrt {2}}$ |
| |
Factorizando: |
| |
|
$\dfrac{\sqrt {2}}{(6+5-2)\sqrt {2}}$ |
| |
|
$\dfrac{\sqrt {2}}{9\sqrt {2}}$ |
| |
Simplificando $\sqrt{2}$ en los dos términos: |
| |
|
$\dfrac{1}{9}$ |
| |
|
$0,1111111111...$ |
| |
|
$0,\widehat{1}$ |
| Respuesta: |
| |
La solución es la Alternativa C |