| Realizando el análisis: |
| |
Compra total $(C_t)$: |
| |
|
$C_t=500 \times 20$ |
| |
|
$C_t=S/.\,10\,000$ |
| |
Beneficio($B$): |
| |
|
$B=C_t \times 40\,\%$ |
| |
|
$B=10\,000 \times \dfrac{40}{100}$ |
| |
|
$B=10\,000 \times \dfrac{4}{10}$ |
| |
|
$B=1\,000 \times \dfrac{4}{1}$ |
| |
|
$B=1\,000 \times 4$ |
| |
|
$B=S/.\,4\,000$ |
| |
Beneficio Neto ($B_n$): |
| |
|
$B_n=B-Gasto$ |
| |
|
$B_n=4\,000-G$ |
| |
|
$G=4\,000 - B_n$ |
| |
Gastos($G$): |
| |
|
$G=B_n \times 25\,\%$ |
| |
Reemplazando para calcular $Beneficio\,neto (B_n)$ |
| |
|
$4\,000-B_n=B_n \times 25\,\%$ |
| |
|
$4\,000-B_n \times 100\,\%=B_n \times 25\,\%$ |
| |
|
$4\,000=B_n \times 25\,\%+B_n \times 100\,\%$ |
| |
|
$4\,000=B_n \times 125\,\%$ |
| |
|
$4\,000=B_n \times \dfrac{125}{100}$ |
| |
|
$4\,000=B_n \times \dfrac{5}{4}$ |
| |
|
$\dfrac{ 4\,000 \times 4}{5} =B_n$ |
| |
|
$B_n =S/.\,3\,200$ |
| |
La solución es la Alternativa E |