| Datos: |
| |
$R_1=15\,ohmios$ |
| |
$R_2=12\,ohmios$ |
| |
$R_3=9\,ohmios$ |
| Calculando la Resistencia Total $(R_t)$: |
| |
$\dfrac{1}{R_t}=\dfrac{1}{R_1}+\dfrac{1}{R_2}+\dfrac{1}{R_3}$ |
| |
Reemplazando los valores |
| |
$\dfrac{1}{R_t}=\dfrac{1}{15}+\dfrac{1}{12}+\dfrac{1}{9}$ |
| |
$m.c.m.(15; 12; 9)=180$ |
| |
$\dfrac{1}{R_t}=\dfrac{180\div 15\times 1+180\div 12\times 1+180\div 9\times 1}{180}$ |
| |
$\dfrac{1}{R_t}=\dfrac{12+15+20}{180}$ |
| |
$\dfrac{1}{R_t}=\dfrac{47}{180}$ |
| |
$R_t=\dfrac{180}{47}$ |
| |
$R_t=3,83\,ohmios$ |
| Respuesta |
| |
La solución es la Alternativa C |