| Resolviendo: |
| |
Convirtiendo $radianes$ a $sexagesimales$ |
| |
|
Se sabe que: $\pi=180^{\circ}$ |
| |
|
Reemplazando en el expresión: |
| |
|
$\sqrt[\textstyle 3]{5\cot^2{\dfrac{\pi rad}{6}}+3\sec^2{\dfrac{\pi rad}{3}}}$ |
| |
|
$\sqrt[\textstyle 3]{5\cot^2{\dfrac{180^{\circ}}{6}}+3\sec^2{\dfrac{180^{\circ}}{3}}}$ |
| |
|
$\sqrt[\textstyle 3]{5\cot^2{30^{\circ}}+3\sec^2{60^{\circ}}}$ |
| |
Recurrimos al triángulo notable: |
| |
|
 |
| |
|
$cot \,{30^{\circ}}=\dfrac{cateto\,adyacente}{cateto\,opuesto}=\dfrac{\sqrt 3}{1}=\sqrt 3$ |
| |
|
$sec \,{60^{\circ}}=\dfrac{hipotenusa}{cateto\,adyacente}=\dfrac{2}{1}=2$ |
| |
Reemplazamos en la expresión: |
| |
|
$\sqrt[\textstyle 3]{5\cot^2{30^{\circ}}+3\sec^2{60^{\circ}}}$ |
| |
|
$\sqrt[\textstyle 3]{5 \left(\sqrt 3 \right)^{\textstyle 2}+3\left(2 \right)^{\textstyle 2}}$ |
| |
|
$\sqrt[\textstyle 3]{5 \left(3 \right)+3\left(4 \right)}$ |
| |
|
$\sqrt[\textstyle 3]{15 +12}$ |
| |
|
$\sqrt[\textstyle 3]{27}$ |
| |
|
$3$ |
| Respuesta: |
| |
La solución es la Alternativa C |