| Resolviendo: Convirtiendo a sexagesimal |
| |
En la primera expresión, se sabe que $\pi=180^{\circ}$ |
| |
|
$=\dfrac{3\pi\,rad}{8}$ |
| |
|
$=\dfrac{3 \times 180^{\circ}}{8}$ |
| |
|
$=67,5^{\circ}$ |
| |
En la segunda expresión: |
| |
|
$\dfrac{S}{360^{\circ}}=\dfrac{C}{400^g}$ |
| |
|
$\dfrac{S}{36^{\circ}}=\dfrac{C}{40^g}$ |
| |
|
$S=\dfrac{9^{\circ} C}{10^g}$ |
| |
|
Reemplazando el valor dado |
| |
|
$S=\dfrac{9^{\circ} (65^g)}{10^g}$ |
| |
|
$S=58,5^{\circ}$ |
| |
Calculando $E$ |
| |
|
$E=\dfrac{\dfrac{3\pi\,rad}{8}+65^g}{8}$ |
| |
|
$E=\dfrac{67,5^{\circ}+58,5^{\circ}}{8}$ |
| |
|
$E=\dfrac{126^{\circ}}{8}$ |
| |
|
$E=15,75^{\circ}$ |
| |
Convirtiendo los decimales a minutos(') |
| |
|
Se sabe que $^{\circ} = 60'$ |
| |
|
Entonces: $0,75 \times 60'$ |
| |
|
$45'$ |
| |
Entonces |
| |
|
$E=15,75^{\circ}$ |
| |
|
$E=15^{\circ}45'$ |
| Respuesta: |
| |
La solución es la Alternativa E |