| Resolviendo |
| |
Para eliminar el negativo del exponente, se invierte la base: |
| |
|
$N=\left(\dfrac{1}{2}\right)^{-\left(\dfrac{1}{2}\right)^{\textstyle -1}}+\left(\dfrac{1}{3}\right)^{-\left(\dfrac{1}{3}\right)^{\textstyle -1}}+\left(\dfrac{1}{4}\right)^{-\left(\dfrac{1}{4}\right)^{\textstyle -1}}$ |
| |
|
$N=\left(\dfrac{1}{2}\right)^{-\left(\dfrac{2}{1}\right)^{\textstyle 1}}+\left(\dfrac{1}{3}\right)^{-\left(\dfrac{3}{1}\right)^{\textstyle 1}}+\left(\dfrac{1}{4}\right)^{-\left(\dfrac{4}{1}\right)^{\textstyle 1}}$ |
| |
|
$N=\left(\dfrac{1}{2}\right)^{-\left(\textstyle 2 \right)^{\textstyle 1}}+\left(\dfrac{1}{3}\right)^{-\left(\textstyle 3 \right)^{\textstyle 1}}+\left(\dfrac{1}{4}\right)^{-\left(\textstyle 4 \right)^{\textstyle 1}}$ |
| |
|
$N=\left(\dfrac{1}{2}\right)^{\textstyle -2}+\left(\dfrac{1}{3}\right)^{-\textstyle 3 }+\left(\dfrac{1}{4}\right)^{-\textstyle 4 }$ |
| |
Para eliminar el negativo del exponente, se invierte la base: |
|
|
$N=\left(\dfrac{2}{1}\right)^{\textstyle 2}+\left(\dfrac{3}{1}\right)^{\textstyle 3 }+\left(\dfrac{4}{1}\right)^{\textstyle 4 }$ |
| |
|
$N=\left(2\right)^{\textstyle 2}+\left(3 \right)^{\textstyle 3 }+\left(4 \right)^{\textstyle 4 }$ |
| |
|
$N=4+27+256$ |
| |
|
$N=287$ |
| Respuesta: |
| |
La solución es la Alternativa A |