jueves, 22 de junio de 2023

Matemática: Unidad 4 - Ejercicio 25

Efectuar:
$\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}+\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$
$A)$$7$
$B)$$9$
$C)$$2^{\textstyle \sqrt{3}}$
$D)$$8^{\textstyle \sqrt{2}}$
$E)$$10$

Solución

Resolviendo
  Multiplicando en aspa ambas fracciones:
    $\dfrac{(\sqrt{3}+\sqrt{2})(\sqrt{3}+\sqrt{2})+(\sqrt{3}-\sqrt{2})(\sqrt{3}-\sqrt{2})}{(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})}$
    $\dfrac{(\sqrt{3}+\sqrt{2})^{\textstyle 2}+(\sqrt{3}-\sqrt{2})^{\textstyle 2}}{(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})}$
  Recordar:
    Binomio al cuadrado: $(a+b)^2 =a^2+2ab+b^2$
    Diferencia de cuadrados: $a^2-b^2=(a+b)(a-b)$
    $=\dfrac{(\sqrt{3}+\sqrt{2})^{\textstyle 2}+(\sqrt{3}-\sqrt{2})^{\textstyle 2}}{(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})}$
    $=\dfrac{(\sqrt {3})^2 +2\sqrt {3}\sqrt {2}+(\sqrt {2})^2+(\sqrt {3})^2 -2\sqrt {3}\sqrt {2}+(\sqrt {2})^2}{(\sqrt {3})^2-(\sqrt {2})^2}$
  Eliminando: $2\sqrt {3}\sqrt {2}$, ya que tienen diferentes signos:
    $=\dfrac{(\sqrt {3})^2 +(\sqrt {2})^2+(\sqrt {3})^2 +(\sqrt {2})^2}{(\sqrt {3})^2-(\sqrt {2})^2}$
    $=\dfrac{3 +2+3 +2}{3-2}$
    $=\dfrac{10}{1}$
    $=10$
Respuesta:
  La solución es la Alternativa E