| Resolviendo |
| |
Multiplicando en aspa ambas fracciones: |
| |
|
$\dfrac{(\sqrt{3}+\sqrt{2})(\sqrt{3}+\sqrt{2})+(\sqrt{3}-\sqrt{2})(\sqrt{3}-\sqrt{2})}{(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})}$ |
| |
|
$\dfrac{(\sqrt{3}+\sqrt{2})^{\textstyle 2}+(\sqrt{3}-\sqrt{2})^{\textstyle 2}}{(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})}$ |
| |
Recordar: |
| |
|
Binomio al cuadrado: $(a+b)^2 =a^2+2ab+b^2$ |
| |
|
Diferencia de cuadrados: $a^2-b^2=(a+b)(a-b)$ |
| |
|
$=\dfrac{(\sqrt{3}+\sqrt{2})^{\textstyle 2}+(\sqrt{3}-\sqrt{2})^{\textstyle 2}}{(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})}$ |
| |
|
$=\dfrac{(\sqrt {3})^2 +2\sqrt {3}\sqrt {2}+(\sqrt {2})^2+(\sqrt {3})^2 -2\sqrt {3}\sqrt {2}+(\sqrt {2})^2}{(\sqrt {3})^2-(\sqrt {2})^2}$ |
| |
Eliminando: $2\sqrt {3}\sqrt {2}$, ya que tienen diferentes signos: |
| |
|
$=\dfrac{(\sqrt {3})^2 +(\sqrt {2})^2+(\sqrt {3})^2 +(\sqrt {2})^2}{(\sqrt {3})^2-(\sqrt {2})^2}$ |
| |
|
$=\dfrac{3 +2+3 +2}{3-2}$ |
| |
|
$=\dfrac{10}{1}$ |
| |
|
$=10$ |
| Respuesta: |
| |
La solución es la Alternativa E |