| Resolviendo |
| |
Descomponiendo: |
| |
|
$\dfrac{2\sqrt{50}+3\sqrt{8}-\sqrt{32}}{\sqrt{98}-\sqrt{18}+3\sqrt{2}}$ |
| |
|
$\dfrac{2\sqrt{25\times 2}+3\sqrt{4 \times 2}-\sqrt{16 \times 2}}{\sqrt{49 \times 2}-\sqrt{9 \times 2}+3\sqrt{2}}$ |
| |
Separando raíces: |
| |
|
$\dfrac{2\sqrt{25}\sqrt{2}+3\sqrt{4}\sqrt{2}-\sqrt{16}\sqrt{2}}{\sqrt{49}\sqrt{2}-\sqrt{9} \sqrt {2}+3\sqrt{2}}$ |
| |
|
$\dfrac{2(5)\sqrt{2}+3(2)\sqrt{2}-4\sqrt{2}}{7\sqrt{2}-3\sqrt {2}+3\sqrt{2}}$ |
| |
|
$\dfrac{10\sqrt{2}+6\sqrt{2}-4\sqrt{2}}{7\sqrt{2}-3\sqrt {2}+3\sqrt{2}}$ |
| |
Factorizando: |
| |
|
$\dfrac{(10+6-4)\sqrt{2}}{(7-3+3)\sqrt{2}}$ |
| |
|
$\dfrac{12\sqrt{2}}{7\sqrt{2}}$ |
| |
Simplificando $\sqrt{2}$ en ambos términos: |
| |
|
$\dfrac{12}{7}$ |
| Respuesta: |
| |
La solución es la Alternativa B |