| Resolviendo |
| |
Para eliminar el exponente negativo, se invierte la base |
| |
|
$E=\left[\left(\dfrac{1}{5}\right)^{-2}+2\left(\dfrac{3}{2}\right)^{-2}+\left(\dfrac{1}{3}\right)^2+\left(\dfrac{1}{7}\right)^{-2}+\left(\dfrac{1}{6}\right)^{-1}\right]^{\frac{1}{2}}$ |
| |
|
$E=\left[\left(5\right)^{2}+2\left(\dfrac{2}{3}\right)^{2}+\left(\dfrac{1}{3}\right)^2+\left(7\right)^{2}+\left(6\right)^{1}\right]^{\frac{1}{2}}$ |
| |
|
$E=\left[5^2+2\left(\dfrac{2^2}{3^2}\right)+\left(\dfrac{1^2}{3^2}\right)+7^2+6^1 \right]^{\frac{1}{2}}$ |
| |
|
$E=\left[25+2\left(\dfrac{4}{9}\right)+\left(\dfrac{1}{9}\right)+49+6 \right]^{\frac{1}{2}}$ |
| |
Sumando los enteros: |
| |
|
$E=\left[80+\dfrac{2\times 4}{9}+\dfrac{1}{9} \right]^{\frac{1}{2}}$ |
| |
|
$E=\left[80+\dfrac{8}{9}+\dfrac{1}{9} \right]^{\frac{1}{2}}$ |
| |
|
$E=\left[80+\dfrac{8+1}{9}\right]^{\frac{1}{2}}$ |
| |
|
$E=\left[80+\dfrac{9}{9}\right]^{\frac{1}{2}}$ |
| |
|
$E=\left[80+1\right]^{\frac{1}{2}}$ |
| |
|
$E=\left[81\right]^{\frac{1}{2}}$ |
| |
Un número elevado a la $\frac{1}{2}$ equivale a la raíz cuadrada: |
| |
|
$E=\sqrt{81}$ |
| |
|
$E=9$ |
| Respuesta: |
| |
La solución es la Alternativa C |