| Obteniendo la fracción generatriz de cada decimal |
| |
$0,\overline{4 }= \dfrac{4}{9}$ |
| |
$0,25 = \dfrac{25}{100}=\dfrac{1}{4}$ |
| |
$0,1\overline{2} = \dfrac{12-1}{90}=\dfrac{11}{90}$ |
| |
$1,1\overline{6} = \dfrac{116-11}{90}=\dfrac{105}{90}$ |
| Resolviendo |
| |
$M=\dfrac{(0,\overline{4} \times 0,25+0,1\overline{2})}{1,1\overline{6}}$
|
| |
$M=\dfrac{\left(\dfrac{4}{9} \times \dfrac{1}{4}+\dfrac{11}{90}\right)}{\dfrac{105}{90}}$ |
| |
Simplificando el 4 |
| |
$M=\dfrac{ \dfrac{1}{9} +\dfrac{11}{90}}{\dfrac{105}{90}}$ |
| |
$M=\dfrac{ \dfrac{1(10)}{9(10)} +\dfrac{11}{90}}{\dfrac{105}{90}}$ |
| |
$M=\dfrac{ \dfrac{10}{90} +\dfrac{11}{90}}{\dfrac{105}{90}}$ |
| |
$M=\dfrac{ \dfrac{10+11}{90}} {\dfrac{105}{90}}$ |
| |
Simplificando el 90 |
| |
$M= \dfrac{21}{105}$ |
| |
$M= \dfrac{1}{5}$ |
| Respuesta: |
| |
La solución es la Alternativa A |