| Resolver | |
| $\dfrac{\dfrac{1}{4}+\dfrac{1}{3}}{\dfrac{1}{2}+\dfrac{1}{6}}$ | |
| $A)$ | $\dfrac{2}{7}$ |
| $B)$ | $\dfrac{3}{5}$ |
| $C)$ | $\dfrac{1}{8}$ |
| $D)$ | $\dfrac{7}{8}$ |
| $E)$ | $\dfrac{3}{8}$ |
Solución
| Datos | ||
| Resolviendo la expresión | ||
| $=\dfrac{\dfrac{1}{4}+\dfrac{1}{3}}{\dfrac{1}{2}+\dfrac{1}{6}}$ | ||
| $=\dfrac{\dfrac{1\times 3+4 \times 1}{4 \times 3}}{\dfrac{1\times 6+2 \times 1}{2 \times 6}}$ | ||
| $=\dfrac{\dfrac{3+4}{12}}{\dfrac{6+2}{12}}$ | ||
| $=\dfrac{\dfrac{7}{12}}{\dfrac{8}{12}}$ | ||
| $=\dfrac{7}{8}$ | ||
| Respuesta | ||
| La solución es la Alternativa D | ||